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Abstract

The cross section for coherent J/ψ photoproduction accompanied by at least one
neutron on one side of the interaction point and no neutron activity on the other
side, Xn0n, is measured with the CMS experiment in ultra-peripheral PbPb colli-
sions at

√
sNN = 2.76 TeV. The analysis is based on a data sample corresponding

to an integrated luminosity of 159 µb−1, collected during the 2011 PbPb run. The J/ψ
mesons are reconstructed in the dimuon decay channel, while neutrons are detected
using zero degree calorimeters. The measured cross section is dσcoh

Xn0n
/dy(J/ψ) =

0.36 ± 0.04 (stat) ± 0.04 (syst) mb in the rapidity interval 1.8 < |y| < 2.3. Using a
model for the relative rate of coherent photoproduction processes, this Xn0n mea-
surement gives a total coherent photoproduction cross section of dσcoh/dy(J/ψ) =
1.82 ± 0.22 (stat) ± 0.20 (syst) ± 0.19 (theo) mb. The data strongly disfavour the im-
pulse approximation model prediction, indicating that nuclear effects are needed to
describe coherent J/ψ photoproduction in γ + Pb interactions. The data are found
to be consistent with the leading twist approximation, which includes nuclear gluon
shadowing.
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1 Introduction
Photon-induced reactions occur in Ultra-Peripheral Collisions (UPC) of heavy ions, which in-
volve electromagnetic interactions at impact parameters larger than the sum of the radii of the
colliding nuclei. Because of the extremely high UPC photon flux in heavy-ion collisions and
the fact that cross sections for photon-nucleus collisions are proportional to Z2, where Z is the
charge of the nucleus, photon-nucleus collisions at the LHC are abundant [1–3]. Furthermore,
in UPCs the LHC can reach unprecedented photon-lead and photon-proton center-of-mass en-
ergies, Wγ+Pb up to 500 GeV in PbPb and Wγ+p up to 1.5 TeV in pPb collisions.

Exclusive J/ψ photoproduction is defined by the reaction γ + p→ J/ψ + p, with the character-
istic features that, apart from the vector meson in the final state, no other particles are produced
and the vector meson has a low transverse momentum. Another characteristic feature is that in
exclusive photoproduction the quantum numbers of the final state can be studied unambigu-
ously. The γ + p → J/ψ + p production process has been studied by H1 and ZEUS collabora-
tions at the electron-proton collider HERA [4, 5], by the CDF collaboration in proton-antiproton
collisions at the Tevatron [6], and by the ALICE and LHCb collaborations at the LHC, in proton-
lead [7] and proton-proton collisions [8], respectively. Since the cross section of photoproduced
vector mesons such as J/ψ, ψ(2S), and Υ(nS) is proportional to the gluon density squared in
the target [9, 10], the study of such diffractive processes in high-energy collisions is expected
to provide insights into the role played by gluons in hadronic matter. As an example, a J/ψ
produced at rapidity y is sensitive to the gluon distribution at x = (MJ/ψ/

√
s)e±y at hard scales

Q2 ∼ M2
J/ψ/4 [9, 10]. The relevant values of x that can be explored at the LHC are in the 10−2

to 10−5 range.

In ultra-peripheral nucleus-nucleus collisions, vector mesons can be produced in γ+A interac-
tions off one of the nuclei [11–19]. Such interactions are characterized by very low multiplicity,
and indeed the majority of such events are exclusive, i.e. γ +A→ J/ψ +A. The interaction that
produces the vector meson is classified as coherent if the photon interacts with the whole nu-
cleus, leaving the nucleus intact. In incoherent interactions, the photon interacts with a single
nucleon, and the nucleus breaks apart. The requirement of having coherent photoproduction
constrains the transverse momentum distribution of the vector mesons to be of the order of
pT ≈ 60 MeV for PbPb collisions at

√
sNN = 2.76 TeV [1–3]. Because the nucleon radius is

smaller than that of the nuclei, the momentum transfer to the vector meson from incoherent
photoproduction is higher, of the order of 500 MeV at

√
sNN = 2.76 TeV. Such a momentum

transfer causes the target nucleus to break up and, in most cases, it produces neutrons at very
small angles with respect to the Pb beams (forward neutrons). However, vector mesons pro-
duced coherently can also be accompanied by forward neutrons. Owing to the intense electro-
magnetic fields present in ultra-peripheral nucleus-nucleus collisions, additional independent
soft electromagnetic interactions can occur between the nuclei giving rise to forward neutrons.
The emission of such neutrons is understood in terms of giant dipole resonances [20].

Ultimately, UPC studies at hadron colliders and similar measurements at the proposed electron-
ion colliders [21, 22] are expected to reduce uncertainties in our knowledge of the initial state of
a high-energy nucleus-nucleus collision, in particular, regarding the intrinsic distribution and
fluctuations of gluons in the nuclei. The uncertainty over the initial state is currently an im-
pediment to measuring fundamental properties of the quark-gluon plasma, such as viscosity,
to a high precision [23]. The largest theoretical uncertainty comes from the nuclear distribution
function for gluons, which at a given value of the Bjorken variable x may be depleted (shad-
owing) or enhanced (anti-shadowing) with respect to the scaled proton distribution function
for gluons. These parton distribution functions (PDFs) have been parameterized using global
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fitting techniques, such as EPS09 [24], that evolve quarks, antiquarks, and gluons as a function
of Q2. The fitting results from EPS09 have a large uncertainty for x < 10−2 due to the lack of ex-
perimental data sensitive to low x and Q2. The data from ultra-peripheral collisions at the LHC
have the potential to provide new constraints to both the proton and nuclear PDFs. Recent the-
oretical work has been carried out to include the study of UPC vector meson photoproduction
in global PDF fits [25, 26].

The STAR and PHENIX collaborations at RHIC have studied ρ0 and J/ψ photoproduction in
ultra-peripheral AuAu collisions at

√
sNN = 200 GeV [27, 28]. Although RHIC studies have

demonstrated the feasibility of measuring these processes, it was not possible to significantly
constrain the nuclear gluon PDFs. The J/ψ analysis was statistically limited [27], while for UPC
ρ0 analyses a hard scale cannot be established to perform perturbative QCD calculations. The
production rate for UPC physics processes is much higher at the LHC. The ALICE collaboration
has measured coherent photoproduction of J/ψ mesons in ultra-peripheral PbPb collisions at√

sNN = 2.76 TeV [29, 30]. These data have been used to compute the nuclear suppression
factor R = (GA/AGN)

2, where GA and GN are the gluon distributions in a nucleus (A = 208
in the case of the Pb nuclei) and in a free proton, respectively, obtaining R = 0.61+0.05

−0.04 for x ∼
10−3 [31]. These results have provided evidence that the nuclear gluon density is below that
expected for a simple superposition of protons and neutrons in the nucleus [29, 30]. Models that
neglect nuclear gluon shadowing (see Section 6 for discussion on the impulse approximation)
or models that maximize the gluon shadowing, such as EPS08 [32], have been ruled out by
these measurements.

This Letter reports the study of the coherent J/ψ photoproduction cross section measure in
ultra-peripheral PbPb collisions at

√
sNN = 2.76 TeV, as well as the dependence of this cross

section on the associated production of forward or backward neutrons, i.e. on the so-called
neutron break-up mode ratios [17]. To focus on events with low backgrounds, following the
experience at RHIC [28], the UPC trigger selected events with at least one neutron in either
the forward or backward direction from the interaction point using zero degree calorimeters.
Using this trigger, both coherent and incoherent J/ψ mesons and γ + γ→ µ+µ− events in con-
junction with at least one neutron can be studied. This data sample is then used to measure the
cross section for coherent J/ψ photoproduction accompanied by at least one neutron from soft
independent processes. The J/ψ candidates are reconstructed through the dimuon decay chan-
nel in the rapidity interval 1.8 < |y| < 2.3, adding a new rapidity range to recent measurements
of coherent J/ψ photoproduction at the LHC [29, 30].

This paper is organized as follows: Section 2 describes the CMS detector, Section 3 reports on
the event selection and analysis strategy, Section 4 describes the signal extraction and correc-
tions, Section 5 summarizes the uncertainties of the measurement, and Section 6 discusses the
results. Finally, in Section 7 the summary is given.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scin-
tillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. The
silicon tracker measures charged particles within the pseudorapidity range |η| < 2.5. It consists
of 1440 silicon pixel and 15 148 silicon strip detector modules and is located in the 3.8 T field of
the superconducting solenoid. For nonisolated particles of 1 < pT < 10 GeV and |η| < 1.4, the
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track resolutions are typically 1.5% in pT and 25–90 (45–150) µm in the transverse (longitudi-
nal) impact parameter [33]. The pseudorapidity coverage for the ECAL and HCAL detectors is
|η| < 3.0. Muons are measured using the CMS detector in the pseudorapidity range |η| < 2.4.
The muon detection planes are made using three technologies: drift tubes, cathode strip cham-
bers, and resistive plate chambers. Matching muons to tracks measured in the silicon tracker
results in a relative transverse momentum resolution for muons with 20 < pT < 100 GeV of
1.3–2.0% in the barrel and better than 6% in the endcaps. The pT resolution in the barrel is
better than 10% for muons with pT up to 1 TeV [34]. The Hadronic Forward (HF) calorime-
ters (3.0 < |η| < 5.2) complement the coverage provided by the barrel and endcap detectors.
The beam scintillator counters (BSCs) are plastic scintillators that partially cover the face of
the HF calorimeters. They have a pseudorapidity range between 3.9 and 4.4. The zero degree
calorimeters (ZDCs) are two Cherenkov calorimeters composed of alternating layers of tung-
sten and quartz fibers, situated in between the two proton beam lines. They are sensitive to
neutrons and photons with |η| > 8.3. The HF, BSC and ZDC systems each consist of two de-
tectors at either side of the interaction point: HF±, BSC±, ZDC±, respectively. A more detailed
description of the CMS detector, together with a definition of the coordinate system used and
the relevant kinematic variables, can be found in [35].

3 Event selection and Monte Carlo samples
This analysis uses the data sample collected with the CMS detector in the 2011 PbPb run, which
corresponds to an integrated luminosity of 159 µb−1. The events are selected with a dedicated
trigger designed to record UPC J/ψ vector mesons and γ + γ→ µ+µ− events. The UPC trigger
has the following requirements: an energy deposit consistent with at least one neutron in either
of the ZDCs; low signal in at least one of the BSC+ or BSC− scintillators; the presence of at least
one single muon without a pT threshold requirement, and at least one track in the pixel detector.

The first three trigger requirements are implemented in hardware, while the last requirement
is carried out by the software trigger. To reject beam-gas interactions and suppress non-UPC
events the following requirements are imposed offline. The z position of the primary vertex
is required to be within 25 cm of the beam spot centre. The primary vertex is chosen as the
one with the largest sum p2

T. The length of the pixel clusters must be consistent with tracks
originating from this vertex. This requirement removes beam–background events that produce
elongated pixel clusters. In addition, the time difference between BSC+ and BSC− hits is re-
quired to be consistent with beam-beam interactions. This requirement removes beam-halo
events.

As mentioned above, one of the UPC trigger requirements is the presence of at least one neu-
tron. The events studied in this analysis are classified by the pattern of neutron deposition
measured in the ZDCs [36–38]. The ZDC energy spectrum shows a clear one neutron peak and
the detectors have an energy resolution of about 20% for single neutrons [36–38]. This resolu-
tion allows a good separation between events with zero, one, or multiple neutrons in a given
ZDC detector. The coherent J/ψ cross section is measured for the case when the J/ψ mesons
are accompanied by at least one neutron on one side of the interaction point and no neutron
activity on the other side (Xn0n). The Xn0n break-up mode, which is conventionally written as
Pb + Pb → Pb + Pb+ J/ψ (Xn0n), is a subset of the triggered events. This break-up mode is
well suited for rejecting non-UPC background due to its asymmetric configuration [39].

Apart from the Xn0n break-up mode, the UPC trigger also selects the XnXn, 1n0n, and 1n1n
break-up modes. The XnXn mode requires that both ZDCs record at least one neutron. The
1n0n mode requires that one of the ZDCs detects exactly one neutron with no neutron activity
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on the other ZDC side. Finally, the 1n1n mode requires both ZDCs to have exactly one neutron.

In addition to the ZDC requirement, two selections are applied to reject non-UPC events. First,
only events with exactly two reconstructed tracks are kept. Second, the HF cell with the largest
energy deposit is required to have an energy below 3.85 GeV. This requirement ensures that
the HF energy is consistent with the presence of photon-induced processes which leave very
low signal in both the HF+ and HF− detectors.

In this analysis, both muons have to satisfy the quality criteria described below, and must lie
within the phase space region 1.2 < |η| < 2.4 and 1.2 < pT < 1.8 GeV. This phase space
region is chosen to ensure good statistical precision on the data-driven measurement of the
single-muon efficiency (see Section 4). The CMS collaboration has developed several types of
muon identification [34]. In this analysis, all tracks in the silicon tracker that are identified
as muons, based on information of the muon detectors, are used. The algorithm extrapolates
each reconstructed silicon track outward to its most probable location within each detector
of interest (ECAL, HCAL, muon system). This procedure enables the identification of single
muons with very low transverse momenta. To reduce additional muons or charged particle
tracks that can be misidentified as muons and to ensure good-quality reconstructed tracks, the
single muons are required to pass the following criteria: more than 4 hits in the tracker, at
least one of which is required to be in a pixel layer, a track fit with a χ2 per degree of freedom
less than three, and a transverse (longitudinal) impact parameter of less than 0.3 (20) cm from
the measured vertex. For this analysis, only events with dimuons having pT < 1.0 GeV, in
the rapidity interval 1.8 < |y| < 2.3, are considered. The dimuon candidates are required to
be within the invariant mass region 2.6 < m(µ+µ−) < 3.5 GeV. No like-sign dimuon pairs
are found in this region. Applying the muon quality requirements, after all other analysis
selections, only reject one dimuon candidate out of 518 events.

In order to compute acceptance and efficiency corrections and for signal extraction purposes,
Monte Carlo (MC) samples for coherent J/ψ, incoherent J/ψ and γ+ γ events in the dimuon de-
cay channel are generated, using the STARLIGHT MC event generator [14, 40, 41]. These events
are processed with the full CMS simulation and reconstruction software. The STARLIGHT gen-
erator models two-photon and photon-hadron interactions at ultra-relativistic energies. In the
case of photon-nuclear reactions, it models both coherent and incoherent events using the gen-
eralized vector meson dominance model. It uses the classical Glauber approach for estimating
the number of interacting nucleons, and makes use of exclusive J/ψ photoproduction in γ + p
results from HERA to compute the coherent J/ψ cross section in γ + Pb interactions [14]. The
STARLIGHT generator is also used to simulate the various break-up modes for one or both Pb
nuclei, which assumes that the probabilities for exchange of multiple photons in a single event
factorize in impact parameter space [42].

4 Signal extraction and corrections
After applying the selections described in Section 3, the dimuon invariant mass and pT distri-
butions is simultaneously fitted in order to extract the number of coherent J/ψ, incoherent J/ψ,
and γ + γ → µ+µ− events. The fit uses a maximum likelihood algorithm that takes unbinned
projections of the data in invariant mass and pT as inputs. The shapes of the pT distributions
for these three processes are determined from STARLIGHT simulation. The yield for each of
these processes in the pT distribution is a free parameter of the fit. The dimuon invariant mass
distribution of the sum of coherent and incoherent J/ψ events is described with a Crystal Ball
function [43], which accounts for the detector resolution as well as the radiative tail from in-
ternal bremsstrahlung. A second-order polynomial accounts for the underlying dimuon con-



5

) [GeV]-µ+µm(
2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

E
ve

nt
s 

/ (
0.

04
5 

G
eV

)

0

20

40

60

80

100

120

140

160

180
CMS

 (2.76 TeV)-1bµ)     159 
n0n

 (Xψ Pb+Pb+J/→Pb+Pb 

) < 1.0 GeV-µ+µ(
T

p

)| < 2.3-µ+µ1.8 < |y(
CMS data

-µ+µ → γγ
Total

) [GeV]-µ+µ(
T

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

nt
s 

/ (
0.

05
 G

eV
)

0

20

40

60

80

100

120

140

160

CMS data

ψCoherent J/

ψIncoherent J/
-µ+µ → γγ

Total

CMS

 (2.76 TeV)-1bµ)     159 
n0n

 (Xψ Pb+Pb+J/→Pb+Pb 

)| < 2.3-µ+µ1.8 < |y(
) < 3.5 GeV-µ+µ2.6 < m(

Figure 1: Results from the simultaneous fit to dimuon invariant mass (left) and pT (right)
distributions from opposite-sign muon pairs with pT < 1.0 GeV, 1.8 < |y| < 2.3 and 2.6 <
m(µ+µ−) < 3.5 GeV for the Xn0n break-up mode, after all selections are applied. In the left
panel the green curve represents the γ+γ component (second-order polynomial) and the black
curve the sum of the γ + γ, incoherent J/ψ, and coherent J/ψ components (see text for details).
In the right panel the green, red, and blue curves represent γ + γ, coherent J/ψ, and incoherent
J/ψ components, respectively. The black curve represents the sum of the γ + γ, coherent J/ψ,
and incoherent J/ψ components. Only statistical uncertainties are shown. The data are not
corrected by acceptance and efficiencies, and the MC templates are folded with the detector
response simulation.

tinuum that originates from γ + γ → µ+µ− events. The fit has nine free parameters: three
for the yields of each of the processes, two for the shape of the Crystal Ball function tail, two
for the mean and width of the Crystal Ball function, and two parameters for the shape of the
second-order polynomial. The fit constrains the number of coherent J/ψ, incoherent J/ψ, and
dimuon continuum events to be the same in the invariant mass and pT distributions. The pro-
jections of the Xn0n break-up data onto the dimuon invariant mass and pT axes are shown in
Fig. 1. As discussed in Section 1, the average pT distribution for the coherent events is peaked
at lower pT values than those from incoherent events. Reconstructed coherent J/ψ events are
dominant for pT < 0.15 GeV, whereas reconstructed incoherent J/ψ events are dominant for
pT > 0.15 GeV. The fit yields 207± 18 (stat) for the coherent J/ψ candidates, 75± 13 (stat) for
incoherent J/ψ events and 75± 13 (stat) for γ + γ events with pT < 0.15 GeV in the rapidity
interval 1.8 < |y| < 2.3.

The combined acceptance (A) and efficiency (ε) correction factor for J/ψ events in the Xn0n
break-up mode, (A ε)J/ψ, is 5.9± 0.5 (syst)%. The 8% systematic uncertainty on the corrections
are described in Section 5. Two factors contribute to the (A ε)J/ψ: 1) the product of acceptance
multiplied by the offline reconstruction efficiency and 2) the trigger efficiency (εtrig). The first
term is measured to be 12.0± 0.5 (syst)%. It is obtained from both data and MC simulations.
The STARLIGHT generator is used as an input to the full GEANT4 [44] simulation of the CMS
detector. This simulation is used to model the efficiency for all of the selections except the HF
and the muon quality requirements. Zero bias data are used to compute the efficiency of the
HF requirement, while the UPC data are used to compute the efficiency of the muon quality
requirements. The offline selection discussed above is applied, but the trigger requirement is
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not demanded at this stage of the efficiency calculation. The UPC trigger efficiency εtrig for
events passing the event selection is 49.5± 3.5 (syst)%. This is computed by taking the product
of the efficiencies of the individual components: εtrig = εZDC εpixel-track εBSC εdimuon. Because
these trigger components are uncorrelated to each other they are measured separately. The
εdimuon term is measured to be 0.71± 0.02 (syst) from the analysis of the UPC data using the
“tag-and-probe” method [34] in which coherent J/ψ candidates are reconstructed for a wider
kinematic range than in the analysis. Two different methods to compute εdimuon are studied
corresponding to two different background parametrization. Since both methods give consis-
tent results within the statistical uncertainty, the εdimuon systematic uncertainty is found to be
at the 2–3% level. The other components of the trigger efficiency do not require the recon-
struction of coherent J/ψ candidates and they are measured separately using control triggers:
εZDC = 0.91 ± 0.03 (syst), εpixel-track = 0.76 ± 0.03 (syst), and εBSC is fully efficient. The sys-
tematic uncertainty for the acceptance and efficiency correction is discussed in the following
section.

5 Systematic uncertainties and cross-checks
The systematic uncertainties are summarized in Table 1 and can be divided into three groups.
The first group corresponds to the systematic uncertainty due to the signal extraction (5%). The
second group corresponds to the acceptance times efficiency correction (8% after combining the
uncertainties on the neutron detection efficiency, HF energy requirement, MC correction, ZDC
trigger efficiency, and J/ψ reconstruction efficiency). The third group corresponds to the un-
certainty in the luminosity determination (5%) and in the branching ratio (1%). The individual
uncertainties are summarized below.

1. The uncertainty in the signal extraction is found to be 5%. To estimate this uncertainty,
the fitting functions used to describe the invariant mass distribution of the J/ψ and the
continuum are changed to a Gaussian or Landau distribution, respectively. Also the mass
region used for the signal extraction is changed to 2.4 < m(µ+µ−) < 8.0 GeV. The sys-
tematic uncertainty is provided by the maximum variation of the results.

2. The uncertainty in the neutron detection efficiency is found to be 6%. This uncertainty
is mainly due to the presence of low-frequency noise in the readout and is estimated by
comparing results from two different reconstruction algorithms. For each event the ZDC
signal is recorded in 10 time slices of 25 ns each. The standard reconstruction method
uses the difference between the signal in the main time slice and the following one. This
differentiation suppresses the low-frequency noise. The alternative method estimates the
noise from time slices before the main signal.

3. The uncertainty associated with the HF energy requirement is found to be 2%. To esti-
mate this uncertainty, the HF energy limit is decreased from 3.85 to 2.95 GeV, changing
the limit from keeping 99% of the electronic noise events to 95%. Also, the definition of
the HF energy requirement is varied by using the signal from groups of calorimeter cells
known as towers, instead of the individual cells. The η symmetry of the calorimeters is
checked by defining separate limits for HF+ and HF− for both individual cells and tow-
ers. The analysis is repeated for each case and the root-mean-square of the final number
of signal candidates is used to estimate the systematic uncertainty associated with this
requirement.

4. The uncertainty in the MC acceptance corrections is found to be 1%. This is estimated
by varying the pT and rapidity shapes (±30% away from the mean distribution) used to
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produce these corrections. As shown in Section 4, STARLIGHT reproduces the pT shape
for the various processes very well. The shape of the pT distributions reflects the radial
distribution of the charge within the nucleus, which has little uncertainty.

5. The uncertainty for the ZDC component of the UPC trigger is found to be 3%. This is
estimated by using dedicated monitoring triggers.

6. The uncertainty for the J/ψ reconstruction efficiency is found to be 4%. This is computed
using the track reconstruction efficiency uncertainty that is found to be 1–2% [45].

7. The uncertainty of the integrated luminosity determination is estimated to be 5%, based
on the analysis of data from van der Meer scans [46].

8. The uncertainty in the branching fraction for J/ψ decay into muons is 1% [47].

These individual systematic uncertainties are added in quadrature resulting in a total system-
atic uncertainty of 11% for the coherent J/ψ cross section in the Xn0n configuration.

As an additional cross-check of the overall analysis, the γ + γ process is studied. As discussed
in Section 4, the resulting yield of γ + γ events in the 2.6 < m(µ+µ−) < 3.5 GeV mass interval
is Nγ+γ

Xn0n
= 75.2± 12.7 (stat)± 8.3 (syst), while the measured cross section is 44.2± 1.8 (stat)±

0.40 (syst) µb. This result is consistent with the QED calculation provided by the STARLIGHT

MC at the one standard deviation level. The γ + γ → µ+µ− cross section in the dimuon mass
range 4 to 8 GeV (not shown) is also found to be in agreement with the STARLIGHT prediction
within one standard deviation, when considering the statistical and systematic uncertainties.

Table 1: Summary of systematic uncertainties for coherent J/ψ events in the Xn0n configuration.

Source Uncertainty
(1) Signal extraction 5%
(2) Neutron tagging 6%
(3) HF energy limit 2%
(4) MC acceptance corrections 1%
(5) ZDC efficiency estimation 3%
(6) Tracking reconstruction 4%
(7) Int. luminosity determination 5%
(8) Branching fraction 1%
Total 11%

6 Results and comparison to theoretical models on photonuclear
interactions

For the Xn0n break-up mode, the coherent J/ψ cross section in the dimuon decay channel is
given by

dσcoh
Xn0n

dy
(J/ψ) =

Ncoh
Xn0n

B(J/ψ→ µ+µ−)Lint ∆y (A ε)J/ψ
(1)

where B(J/ψ → µ+µ−) = 5.93± 0.06 (syst)% is the branching fraction of J/ψ to dimuons [47],
Ncoh

Xn0n
is the coherent J/ψ yield of prompt J/ψ candidates for pT < 0.15 GeV, Lint = 59 ±

8 (syst) µb−1 is an integrated luminosity, ∆y = 1 is the rapidity bin width, and (A ε)J/ψ =



8 6 Results and comparison to theoretical models on photonuclear interactions

5.9± 0.5 (stat)% is the combined acceptance times efficiency correction factor as discussed in
Section 4. The coherent J/ψ yield of prompt J/ψ candidates is given by

Ncoh
Xn0n

=
Nyield

1 + fD
(2)

where Nyield is the coherent J/ψ yield as extracted from the fit shown in Fig. 1, and fD is the
fraction of J/ψ mesons coming from coherent ψ(2S) → J/ψ + anything. As mentioned in Sec-
tion 4, Nyield = 207± 18 (stat) for coherent J/ψ candidates with pT < 0.15 GeV in the rapidity
interval 1.8 < |y| < 2.3. There are not enough data to perform a coherent ψ(2S) analysis, so
the feed-down correction has to rely on MC simulations. In order to calculate fD, coherent
ψ(2S) events are simulated using STARLIGHT, while PYTHIA is used to simulate the ψ(2S) de-
cay into the J/ψ [29, 30] obtaining fD = 0.018± 0.011 (theo). The theoretical uncertainty of 60%
in fD is obtained from [29, 30]. The resulting coherent J/ψ yield for prompt J/ψ candidates is
Ncoh

Xn0n
= 203± 18 (stat). Thus, the coherent J/ψ photoproduction cross section for prompt J/ψ

mesons in the Xn0n break-up mode is dσcoh
Xn0n

/dy(J/ψ) = 0.36± 0.04 (stat)± 0.04 (syst) mb.

Although the dσcoh
Xn0n

/dy(J/ψ) measurement is interesting in its own right [17], it is also rele-
vant to compare our results to the theoretical predictions and recent results from the ALICE
collaboration [29, 30] that are available for the total coherent J/ψ cross section. As mentioned in
Section 3, one of the UPC trigger requirements is the presence of at least one forward neu-
tron. For this reason it is not possible to scale the measured coherent J/ψ cross section in
the Xn0n break-up mode to the total cross section using our own data. However, as men-
tioned in Section 3, STARLIGHT can simulate coherent vector meson photoproduction in the
various break-up modes for one or both Pb nuclei. The STARLIGHT MC generator is found to
give a good description of the break-up ratios on coherent ρ0 photoproduction measured by
STAR [27] and ALICE [42]. In addition, STARLIGHT gives a good description of the break-up
ratios measured in this analysis. We measure the ratios of the coherent J/ψ cross section in
two different break-up modes (XnXn and 1n1n) to that of the Xn0n mode for J/ψ events with
pT < 0.15 GeV and in the rapidity interval 1.8 < |y| < 2.3. The measured break-up ratios are
0.36± 0.04 (stat) for XnXn/Xn0n and 0.03± 0.01 (stat) for 1n1n/Xn0n, while the STARLIGHT pre-
diction is 0.37± 0.04 (theo) and 0.020± 0.002 (theo), respectively. These ratios are the measured
fraction of the total coherent J/ψ candidates in the Xn0n break-up mode that are either XnXn or
1n1n. These ratios are also compatible with the extracted J/ψ yield for each break-up configu-
ration, determined with the signal extraction procedure described in Section 4. Only statistical
uncertainties in the measured break-up ratios are given since these dominate over the system-
atic uncertainties. The feed-down correction from ψ(2S) decays is not applied for these ratios
since this contribution is expected to cancel out in the ratio. The 10% uncertainty quoted in
the STARLIGHT prediction for the break-up mode scaling factors is based on recent results on
UPC ρ0 photoproduction from the ALICE collaboration [42]. Note that the neutron break-up
theoretical description is independent of whether a J/ψ or a ρ0 is produced [41, 42]. The scaling
factor between the Xn0n break-up mode and the total cross section is 5.1 ± 0.5 (theo). After
applying this scaling factor we obtain the total coherent J/ψ photoproduction cross section
dσcoh/dy(J/ψ) = 1.82± 0.22 (stat)± 0.20 (syst)± 0.19 (theo) mb.

In Fig. 2, the coherent J/ψ photoproduction cross section is compared to recent ALICE measure-
ments [29, 30], to calculations by Guzey et al. [18, 31] based on the impulse approximation, and
to results obtained using the leading twist approximation (see below). The data from ALICE
and CMS show a steady decrease with rapidity.

The leading twist approximation prediction is obtained from Ref. [18] and is in good agreement
with the data. It is a calculation at the partonic level that uses a diffractive proton PDF as an
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Figure 2: Differential cross section versus rapidity for coherent J/ψ production in ultra-
peripheral PbPb collisions at

√
sNN = 2.76 TeV, measured by ALICE [29, 30] and CMS (see text

for details). The vertical error bars include the statistical and systematic uncertainties added
in quadrature, and the horizontal bars represent the range of the measurements in y. Also the
impulse approximation and the leading twist approximation calculations are shown (see text
for details).

input and implements a gluon recombination mechanism within the leading twist approxima-
tion result. This results in an effective nuclear gluon shadowing. The theoretical uncertainty
band for the leading twist approximation result shown in Fig. 2 is 12% and is due to the uncer-
tainty in the strength of the gluon recombination mechanism. This uncertainty is uncorrelated
with the photon flux uncertainty. The nuclear gluon distribution uncertainty is largest at mid-
rapidity where x ∼ 10−3 in the nuclear gluon distribution. At forward rapidity there is a
two-fold ambiguity about the photon direction but the measurements are mostly sensitive to
x ∼ 10−2 [29].

The data are also compared to the impulse approximation result that uses data from exclusive
J/ψ photoproduction in γ + p interactions to estimate the coherent J/ψ cross section in γ + Pb
collisions. By using γ + p data, the impulse approximation calculation neglects all nuclear
effects such as the expected modification of the gluon density in the lead nuclei compared
to that of the proton. This calculation overpredicts the CMS measurement by more than 3
standard deviations in the rapidity interval 1.8 < |y| < 2.3, when adding the experimental and
theoretical uncertainties in quadrature.

The impulse approximation calculation is derived from the product of two quantities: the elas-
tic nuclear form factor FA(t) and the differential cross section dσ/dt of γ + p→ J/ψ + p, where
t is the momentum transfer from the target nucleus squared. The FA(t) is the Fourier transform
of the matter density ρ(t), while the elementary cross section dσ/dt has been measured by var-
ious collaborations [4–8], as described in Section 1. The impulse approximation result shown
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in Fig. 2 is performed by Guzey et al. using the methods they describe in Ref. [31] with a pQCD
motivated parametrization [48] of exclusive J/ψ data in γ + p interactions which incorporates
very recent LHC results [7, 8]. Thus, in the impulse approximation there is an experimental un-
certainty associated to fitting the measured elementary cross section data to the parametriza-
tion [48] and this uncertainty is at the 4% level for the relevant photon-proton center-of-mass
energies discussed in this analysis. In addition, there are two theoretical uncertainties in the im-
pulse approximation calculation. The first theoretical uncertainty is due to the matter density
distribution and is estimated to be 5% based on studies of several matter distribution densi-
ties [31]. The second theoretical uncertainty is due to the uncertainty in the photon flux and is
estimated to be 5%. This is dominated by the treatment of the photon flux factor for the case
when the PbPb collisions take place at small impact parameters ∼2RA. These two uncertain-
ties are correlated and so to be conservative the combined theoretical uncertainty is taken to be
10%.

The data are also consistent with the central value of the EPS09 global fit from 2009 (not shown),
which has large uncertainties [24]. Other calculations of the coherent J/ψ cross section are not
considered because the theoretical uncertainties are not available.

7 Summary
The coherent J/ψ photoproduction cross section in ultra-peripheral PbPb collisions at

√
sNN

= 2.76 TeV, in conjunction with at least one neutron on one side of the interaction point and
no neutron activity on the other side, is measured to be dσcoh

Xn0n
/dy(J/ψ) = 0.36± 0.04 (stat)±

0.04 (syst) mb in the rapidity interval 1.8 < |y| < 2.3. This measurement is extrapolated to the
total coherent J/ψ cross section, resulting in dσcoh/dy(J/ψ) = 1.82± 0.22 (stat)± 0.20 (syst)±
0.19 (theo) mb in the measured rapidity interval. These results complement recent measure-
ments on coherent J/ψ photoproduction in ultra-peripheral PbPb collisions at

√
sNN = 2.76 TeV

by the ALICE collaboration. An impulse approximation model prediction is strongly disfa-
vored, indicating that nuclear effects expected to be present at low x and Q2 values are needed
to describe the data. The prediction given by the leading twist approximation, which includes
nuclear gluon shadowing, is consistent with the data.
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Trento, Italy
P. Azzia,13, N. Bacchettaa, M. Bellatoa, L. Benatoa ,b, A. Bolettia,b, M. Dall’Ossoa,b,13, T. Dorigoa,
F. Fanzagoa, F. Gasparinia,b, A. Gozzelinoa, M. Gulminia,30, S. Lacapraraa, M. Margonia ,b,
A.T. Meneguzzoa,b, M. Michelottoa, M. Passaseoa, J. Pazzinia ,b ,13, M. Pegoraroa, N. Pozzobona ,b,
P. Ronchesea,b, M. Sgaravattoa, F. Simonettoa ,b, E. Torassaa, M. Tosia,b, S. Vaninia,b, S. Venturaa,
M. Zanetti, P. Zottoa,b, A. Zucchettaa,b ,13

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
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E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda,
I. Redondo, L. Romero, M.S. Soares

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, M. Missiroli, D. Moran



23

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon13,
J.M. Vizan Garcia

Instituto de Fı́sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
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Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler48, L. Caminada, M.F. Canelli, V. Chiochia, A. De Cosa, C. Galloni,
A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann,
D. Salerno, Y. Yang

National Central University, Chung-Li, Taiwan
K.H. Chen, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu,
A. Pozdnyakov, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
Arun Kumar, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz,
F. Fiori, U. Grundler, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Petrakou,
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